
Schematizing Trust in Named Data Networking

Yingdi Yu
UCLA

yingdi@cs.ucla.edu

Alexander Afanasyev
UCLA

afanasev@cs.ucla.edu

David Clark
MIT

ddc@csail.mit.edu
kc claffy

CAIDA
kc@caida.org

Van Jacobson
UCLA

vanj@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Securing communication in network applications involves
many complex tasks that can be daunting even for secu-
rity experts. The Named Data Networking (NDN) architec-
ture builds data authentication into the network layer by re-
quiring all applications to sign and authenticate every data
packet. To make this authentication usable, the decision
about which keys can sign which data and the procedure
of signature verification need to be automated. This pa-
per explores the ability of NDN to enable such automation
through the use of trust schemas. Trust schemas can provide
data consumers an automatic way to discover which keys
to use to authenticate individual data packets, and provide
data producers an automatic decision process about which
keys to use to sign data packets and, if keys are missing,
how to create keys while ensuring that they are used only
within a narrowly defined scope (“the least privilege princi-
ple”). We have developed a set of trust schemas for several
prototype NDN applications with different trust models of
varying complexity. Our experience suggests that this ap-
proach has the potential of being generally applicable to a
wide range of NDN applications.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; D.4.6 [Software]: Security and
Protection

Keywords
Security, Named Data Networking

1. INTRODUCTION
Designing secure systems and network applications in-

volves properly authenticating multiple entities in the sys-
tem and granting these entities with the minimum set of
privileges necessary to perform operations. In contrast to
traditional IP networks where applications usually rely on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICN’15, September 30–October 2, 2015, San Francisco, CA, USA.
c© 2015 ACM. ISBN 978-1-4503-3855-4/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810156.2810170.

an additional layer (e.g., Transport Layer Security [9]) to au-
thenticate connections, Named Data Networking (NDN) [18,
20] is a proposed data-centric Internet architecture that re-
quires every application to name and sign the produced
network-level data packets and to authenticate received pack-
ets. To utilize the data-centric security of NDN without
requiring application developers and users to be security ex-
perts, system-level support is needed to automate the pro-
cess of packet signing and authentication.

The power of the NDN architecture comes from nam-
ing data hierarchically with the granularity of network-level
packets and sealing named data with public key signatures.
Producers use key names to indicate which public key a con-
sumer should retrieve to verify signatures of produced data
packets. In addition to fetching the specified keys and per-
forming signature verification, consumers also match data
and key names to determine whether the key is authorized
to sign each specific data packet.

To facilitate this matching process, we introduce the con-
cepts of trust rules and trust schemas. A set of trust rules de-
fines a trust schema that instantiates an overall trust model
of an application, i.e., what is (are) legitimate key(s) for each
data packet that the application produces or consumes. The
fundamental idea is that each trust rule defines a relation-
ship between the name of each piece of data and its signing
key, e.g., both must share the same prefix, share the same
suffix, and/or have specific name components at certain po-
sition of the names. Given a trust schema that correctly
reflects the trust model of the application, data producers
can select (and if necessary generate) the right keys to sign
the produced data automatically, and consumers can prop-
erly authenticate each retrieved data packet.

In this paper we describe how NDN naming and the use
of trust schemas enable automation of data signing and au-
thentication in NDN applications with complex trust mod-
els. We have implemented a prototype of a trust schema in
NDN application development libraries (ndn-cxx and NDN-
CCL) which have been used to power the trust management
of several NDN applications, including the NDN Forwarding
Daemon (NFD), NDN Link State Routing Protocol (NLSR),
NDN Domain Name System (NDNS), NDN Repository Sys-
tem (repo-ng), and ChronoChat applications [15].

We can summarize our contributions as three-fold. First,
we identified a name-based trust management mechanism,
which we hope not only can help secure NDN applications,
but can also benefit other data-centric systems. Second, we
invented trust schema as a systematic way to define appli-
cation trust models and introduce the concept of security

177

design pattern to facilitate application development. Third,
we developed a prototype of trust schema interpreter that
has been successfully tested to automate authentication and
signing process in a set of diverse NDN applications.

We organize the rest of this paper as follows. Section 2
introduces data authentication in NDN and its threat model.
We then explain the value of a trust schema (Section 3),
our trust schema design (Section 4), its use in automating
trust management (Section 5), and other considerations in
their use (Section 6). Finally we review related work and
summarize our contribution.

2. DATA AUTHENTICATION IN NDN
NDN fosters a data-centric security model at the network

layer [18]: each data packet is uniquely named and this name
is bound to the content using a signature. Besides being
a transport unit as an IP packet, an NDN data packet is
also a storage unit, so that the signature carried in a data
packet secures its content whether the packet is in motion
or in storage. Beside the name, content, signature, and a
few other fields, a data packet also contains a KeyLocator

field [16] to indicate the name of the public key that is used
to produce the signature. In NDN, a key is simply another
piece of named NDN content (Figure 1). Like any other data
packet, a packet carrying a public key is also signed, making
it equivalent to a certificate [19]. Because NDN names the
content carried in a packet, for simplicity, we will use the
term “key” to refer to an NDN data packet that carries a
public key.

Name
Content
Signature
KeyLocator

Data packet

Name
Content
Signature
KeyLocator

Data packet (key)

…

Figure 1: Authentication elements in NDN data packet

In the rest of the paper we assume that given a name, the
network can directly retrieve the corresponding data packet.
Other considerations, including fetching data packets whose
names are not globally routed [1], may require additional
steps in data retrieval but will not affect the security model
described in this paper.

2.1 Example of Data Authentication
We use a simplified blog website framework as an exam-

ple throughout the paper to illustrate a possible trust model
and our proposed approach to schematize it. The framework
includes four groups of entities (Figure 2): the website, web-
site administrators, blog authors, and articles. The website
may have a few administrators, who can authorize authors
to publish articles on the website. Trust relations between
these entities in NDN terms can be captured by signed data
packets and chains of keys. When an administrator installs
the website software, the installer generates a key1 to act
as the root of trust for the website. The installer process
also creates a key for the initial administrator and signs it
with the website’s key. The initial administrator can further

1This key may be self-signed or later secured using some
trust model, e.g., PKI or web-of-trust.

AuthorsAdminsBlog Website Articles

configured by authorize to publish

enable other

Figure 2: Entities of a simple blog website framework

delegate management privileges to other administrators by
signing their keys, and any administrator can add authors
into the system by signing the authors’ keys. Each author
can publish on the website by signing the produced articles
using a valid author key.

When a reader retrieves an article, he or she can recur-
sively follow the KeyLocator field in each data packet to
retrieve the key of the author who wrote the article, the key
of the administrator who authorized the author, and the
key of the blog website where the article is published. If the
reader accepts the website trust model and trusts the public
key of the website (or uses PKI or web-of-trust mechanisms
to verify authenticity of the key), the reader can reliably
authenticate legitimate articles through a sequence of data
packet signature verifications.

2.2 Threat Model
Threats to data authentication integrity in NDN include

failed authentication, mis-authentication, and key compro-
mise. Failed authentication of a legitimate key (false nega-
tive) can result in a consumer treating valid data as mali-
cious, potentially leading to denial of service. Mis-authentication
of a mis-configured or malicious key (false positive) can cause
consumers to accept false data. These errors can occur when
the trust schema (data-key relations) is incorrectly or un-
clearly defined, or when the authentication mechanism does
not fully adhere to the defined schema. A set of commonly
used trust schemas written by security experts not only can
mitigate these threats, but also facilitate automation of both
signing and authentication mechanisms.

When a legitimate key is compromised, an attacker can
obtain privileges associated with this key. To mitigate this
threat we enforce “the least privilege principle”: each key
must have a restricted non-elevating usage scope to limit
the damage upon key compromise, and keys with broader
privileges should be used as infrequently as possible.

3. WHY WE NEED A TRUST SCHEMA
In general, the relationship between data and key names

can be complex. Depending on an application’s naming
structure and trust model, data authentication may involve
a chain of keys (authentication path) across several different
namespaces. We use our blog website example introduced in
Section 2 to illustrate the necessity of authentication across
different namespaces, and highlight the need for the trust
schema to concisely express complex trust model relations.

The blog website framework defines entities in the sys-
tem and also their trust relationships. Since everything is
explicitly named in NDN, the framework also needs to de-
fine a naming representation of the entities. Figure 3 shows
a possible representation: assuming the website owns “/a”
namespace and allocates “/a/blog” to blog publishing, ar-

178

ticles are represented as data packets under the “/a/blog
/article” namespace, with category, publication year, and
unique article identifier; each author obtains a key under
the“/a/blog/author”namespace with an author identifier;2

each administrator obtains a key under the“/a/blog/admin”
namespace with an administrator identifier; and the website
itself has a configuration key with the name “/a/blog” (e.g.,
created during the installation of the blog). An implemen-
tation of this blog website framework must capture the trust
relationship between all these entities in terms of the rela-
tionship between NDN namespaces. However, this compre-
hensive naming structure leads to the fact that an authenti-
cation path following the trust model may need to traverse
three namespaces: “/a/blog/article”, “/a/blog/author”,
and “/a/blog/admin” as shown in Figure 3.

Articles

/a/blog/article

/a/blog/author

/a/blog/admin

/a/blog

signs

signs

signs

Admins

Authors

/a/blog/article/food/2015/1

/a/blog/admin/Lixia/KEY/37
/a/blog/KEY/1

/a/blog/author/Yingdi/KEY/22

/a/blog/admin/Alex/KEY/5

signs

Figure 3: Example of namespaces and authentication paths
in a blog website “/a/blog”

In theory, it is possible for application developers to hard-
code all relationships in the trust model, i.e., relationships
between articles and authors keys, between authors and ad-
ministrators keys, between administrators keys and other
administrators keys, and between administrators keys and
the configuration key of the website. However in practice,
even with a simple trust relationships as in our example, this
process is non-trivial and error-prone. A small implementa-
tion error may compromise the security of the entire website.
For example, a website implementation that accidentally as-
sociates author management with author keys rather than
with administrator keys may allow authors to authorize an-
other author without the permission from an administrator.
Or, an article-publishing application that mistakenly uses
an administrator key to directly sign an article violates the
least privilege principle, and may also prevent browsers that
comply with the trust model from authenticating articles.

In contrast, when the trust relationships are captured by
a set of well-defined rules that match data and key names
(trust schema), a system-level tool interpreting these rules
can automatically execute authentication and signing proce-
dures. This ability to automate unburdens developers from
individually handling sophisticated data signing and authen-
tication. A trust schema also makes it feasible for security
experts to define a set of generalized trust models (e.g., one
for blog websites, one for mail services, etc.) that other ap-
plication instances of the same type can reuse. Each reuse

2The last two components of each key name are “KEY” and
a key identifier. This naming convention allows authors to
change keys over time.

can continue to refine and debug the schema, improving it
for future applications.

4. TRUST SCHEMA
In this section, we present the trust schema as a tool to

define trust models in a generalized way. A trust schema
comprises a set of linked trust rules and one or more trust
anchors. As we will show later in this section, the trust
schema mechanism can be used to automate both authenti-
cation and signing processes. To define trust schema rules,
we will use a notation similar to regular expressions to ex-
press the name pattern. Table 1 gives a brief summary of the
syntax elements we use in name patterns that are formally
defined in [17].

Table 1: Elements of name patterns used in trust schema
definitions

<name> Match name component name

<> Match any single name component, i.e., wildcard
<name><> Match name component name followed by any sin-

gle name component
<>* Match any sequence of name components
(...) Match pattern inside the brakets and assign it as

an indexed sub-pattern
\n Reference to the n-th indexed sub-pattern
[func] Match (for authentication) or specialize (for sign-

ing) name component according to function func
defined pattern, i.e., wildcard specializer

rule(arg1,
...)

Derive a more specific name pattern from rule’s
data name pattern with arguments arg1, ...

4.1 Trust Rule
A trust rule is an association of the data name with its

corresponding signing key name. There are multiple ways
to represent such association. For example, Figure 4(a)
shows a simple direct association between an article name
and its corresponding author name. This rule precisely cap-
tures that the article “.../food/2015/1” must be signed by
author key “.../Yingdi/KEY/22”, but says nothing about
other articles or authors, even those that share the same
naming patterns. If we can generalize the name relation-
ships in trust rules, and reliably link rules to one another, we
can construct concise, sophisticated, robust, and re-usable
trust models.

4.1.1 Generalizing Trust Rules
A well-defined trust model usually associates the same

type of data with the same type of keys, e.g., articles should
always be signed by the authors. We can use the naming
structure of a given application (or a set of applications that
share the same naming structure) to create a set of rules to
define the relationships between name patterns for data and
keys in that application. This set of trust rules then captures
the complete trust model for the application.

In the blog example, all articles share the same prefix
“/a/blog/article”, but each article has its own category,
year, and article identifier. One way to generalize this re-
lationship is to use name patterns as shown in Figure 4(b).
In Figure 4 and later examples, we use the wildcard “<>”
to match any name component (i.e., the schema does not
impose any restrictions on the content of the name com-
ponent), “[user]” to match alphanumerical user identifiers,
and “[id]” to match numerical key identifiers.

179

/a/blog/article/food/2015/1 /a/blog/author/Yingdi/KEY/22
(a) Explicit relationship between specific data and key name

(article is valid if signed by an authenticated key with the specified name)

/a/blog/article/food/2015/1

<a><blog><article><><><>

/a/blog/author/Yingdi/KEY/22
/a/blog/author/David/KEY/31

<a><blog><author>[user]<KEY>[id]
(b) Generalized relation between data and key names

(any article is valid if it is signed by any authenticated author)

/a/blog/article/drinks/2014/2

(c) Coupling generalized relations of data and key names
(any article is valid if it is signed by any authenticated author of this blog)

(<>*)<blog><article><><><> \1<blog><author>[user]<KEY>[id]

<la><times><blog><article><><><> <la><times><blog><author>[user]<KEY>[id]
<a><blog><article><><><> <a><blog><author>[user]<KEY>[id]

Figure 4: Trust rule generalization

Data Name Key NameRule

(<>*)<blog><article><> author(\1)article
(<>*)<blog><author>[user]<KEY>[id] \1<blog><admin>[user]<KEY>[id] author

(b)

(<>*)<blog><article><><><> \1<blog><author>[user]<KEY>[id] article
(<>*)<blog><author>[user]<KEY>[id] \1<blog><admin>[user]<KEY>[id] author(a)

Figure 5: Generalization of trust rule linkage: (a) implicit
linkage; (b) explicit linkage

In general, trust models must explicitly associate a data
name with its signing key name through matching of name
components. In our example, both the article name and the
author name must share the same website name (“/a”). To
capture this constraint, we leverage sub-patterns and repe-
tition syntax, as highlighted in Figure 4(c). We believe this
syntax is sufficiently general to capture complex trust model
frameworks, allowing reuse of trust models by different ap-
plication instances. In other words, the trust schema for our
blog example can be used by any other blog website that
shares the same trust model.

4.1.2 Linking Trust Rules
A trust model should also properly associate keys with

their signing keys, to ensure that a data consumer can reli-
ably construct chains of keys to authenticate data and that
a data producer can correctly choose or initialize its signing
keys.

Figure 5(a) defines “article” and “author” trust rules.
The key name pattern in the “article” rule will always
match the data name pattern of the “author” rule, there-
fore both rules are implicitly linked. However, in order to
ensure integrity of the trust model, the schema should un-
ambiguously describe an authentication path (or paths) for
each valid data packet. Therefore, each rule has to be ex-
plicitly linked to other rule(s) in the trust schema definition.

To explicitly link rules, we assign each rule a unique identi-
fier to be used in a function-like way as part of the key name
pattern, as shown on Figure 5(b). In other words, invoking
such rules is similar to invoking a function: invocation sub-
stitutes the key name pattern with the data name pattern
from the invoked rule, specializing it with the supplied pat-

Data NameRule Key Name

(<>*)<blog><KEY>[id] root /a/blog/KEY/1 (0x30 0x82 ...)

(<>*)<blog><admin>[user]<KEY>[id] admin root(\1)

Key NameAnchor Key

Figure 6: Example of linking trust rule and anchor

terns or references to the indexed sub-patterns. In our exam-
ple, the “article” rule invokes the “author” rule passing to
it the first indexed sub-pattern. For the “/a/blog/article
/food/2015/1” article, the sub-pattern will expand to “/a”
and the invocation to the“author”rule will return“<a><blog>
<author>[user]<KEY>[id]” name pattern. This linkage im-
poses the restriction that only authorized authors of blog
“/a/blog” can sign and publish articles of the blog.

4.2 Trust Anchor
To be complete, a trust schema must also include one

or more trust anchors which serve as bootstrapping points
for the trust model. A trust anchor is a key that is pre-
authenticated using an out-of-band mechanism, e.g., manu-
ally installed or comes with software packages. In the trust
schema we express trust anchors as special rules that include
a key name pattern and a pre-authenticated key. Every
successful authentication path must end at a trust anchor.
Therefore, a trust schema must always include a way for
trust rules to establish the link(s) from data or key names
down to a trust anchor. Figure 6 shows an example of the
trust rule “admin” linking to the trust anchor “root”.

The trust anchor performs two important functions. First,
it explicitly defines not only the name of the trust anchor,
but also the key bits, i.e., if a packet is signed with a key
that matches the name pattern in a trust anchor, this packet
must be authenticated using the pre-specified key bits. Sec-
ond, the anchor explicitly restricts the privilege of the pre-
authenticated public key using name pattern, so that the
key cannot be used to authorize anything else. For example,
an administrator’s key of another website “/another/blog
/admin/Carl” will not be a valid administrator’s key for
“/a/blog”: the expanded key pattern“<another><blog><KEY>
[id]”will not match the blog’s trust anchor“/a/blog/KEY/1”.
Note that the schema also prohibits another website’s ad-
ministrator key to be signed with the blog’s trust anchor:
the “admin” rule will rightfully reject such a key.

4.3 Crypto Requirements
In addition to providing a generalized formal definition

of trust rules and trust anchors, a trust schema must also
include cryptographic requirements on data signatures, such
as the hash and signing algorithm and the minimum key size.
These requirements are not directly related to naming, but
can help prevent consumers from accepting data with easily
compromised signatures. Therefore, a trust schema should
clearly state these parameters as an essential part of a trust
model.

4.4 Trust Schema Examples
We now demonstrate how the trust schema we described

so far can express two different trust models. The first trust
model is for our blog website framework, and the second
is an example of a model that resembles the trust model of

180

Data NameRule Key Name

(<>*)<blog><admin>[user]<KEY>[id]admin admin(\1)
 | root(\1)

(<>*)<blog><author>[user]<KEY>[id]author admin(\1)
(<>*)<blog><article><><><>article author(\1)

 (<>*)<blog><KEY>[id] root /a/blog/KEY/1 (0x30 0x82 ...)
Key NameAnchor Key

Examples
/a/blog/article/food/2015/1
/a/blog/author/Yingdi/KEY/22
/a/blog/admin/Alex/KEY/5
/a/blog/admin/Lixia/KEY/37

Figure 7: Trust schema the blog website framework with
“/a/KEY/1” as the trust anchor

DNSSEC and strictly follows the naming hierarchy to match
data and key names.

4.4.1 Blog Website Framework
In the blog website example, the trust rules must cap-

ture the relationship between articles and authors, between
authors and administrators, as well as between administra-
tors and blog website configuration (the blog’s trust an-
chor). An example of the trust schema that can achieve
these goals is shown in Figure 7. Note that this schema as-
sumes that the blog’s configuration key “/a/blog/KEY/1” is
pre-authenticated (i.e., a trust anchor). Depending on the
specific usage scenario, a blog reader may further authenti-
cate the configuration key using a hierarchical trust model
similar to the example in Section 4.4.2, or using some other
trust model, e.g., web-of-trust.

The first rule in the example schema, “article”, captures
the trust constraint that authors must sign their articles
with their keys. Similarly, the “author” rule ensures that
only blog administrators can sign authors’ keys. The final
“admin” rule defines two possible relations for administra-
tors’ keys in the security framework: (1) existing admin-
istrators may delegate administrator privileges to another
person; and (2) authentication paths for the administrator
keys must terminate at the blog website trust anchor.

Note that although every trust rule in the trust schema
in Figure 7 uses the repeated wildcard “<>*” to match the
website prefix, the prefix is always determined (specialized)
at the moment when the “article” rule captures the orig-
inal article data name. After the “article” rule captures
“/a/blog/article/food/2015/1” data, prefix “/a” is prop-
agated to the “author” rule as a reference to the first sub-
pattern, then to the “admin” rule, and down to the “root”
trust anchor.

4.4.2 Hierarchical Trust Model
In a linear hierarchical trust model, with DNSSEC [2] as

a prominent example, a single rule can capture the relation-
ship between all the data and key names; in plain English,
this rule is“the signing key name must be a prefix of the data
name.” Because key names should be unique and need to in-
clude additional suffix components as shown on Figure 8, the
trust schema for the hierarchical relationship in NDN needs
to consider these additional components.3 The overall trust
in this model can be bootstrapped using one or more trust
anchors associated with the top level namespace(s).

Figure 9 shows an example of the trust schema that defines
the hierarchical trust relationships, consisting of a single rule

3For simplicity, in this example we consider only authenti-
cation of DNS keys, but the trust model and schema can be
easily extended to other DNS data, as shown with the blog
website example.

/a/blog/KEY/1

/a/KEY/42

/KEY/2

signed by

signed by
Blog website key

/a namespace owner’s key

Root key

Figure 8: Example of naming in hierarchical trust model

<KEY>[id]root /KEY/2 (0x66 0x3a ...)

Key NameAnchor Key

Data NameRule Key Name

(<>*)(<>)<KEY>[id] key key(\1, null) | root()
Examples

/a/bog/KEY/1

/a/KEY/42

Figure 9: Trust schema for the hierarchical trust model with
“/KEY/2” as the trust anchor

and a trust anchor. The rule “key” captures that keys at
each level of the hierarchy must be signed by the keys from
the parent namespace, i.e., the prefix before “KEY” of the
signing key name must be one component shorter than the
name of the key itself. The trust anchor ensures that the
authentication path discovery terminates when it reaches the
root namespace: when the prefix of the signing key before
“KEY” is empty (just “/”), then it must be signed by the
specified “/KEY/2” key.

The “key” rule is recursively linked to itself and to the
trust anchor. In these cases, when matching data and key
names, all specified patterns need to be considered, with
anchor rules taking precedence. For a key “/a/blog/KEY/1”,
the rule “key” will extract the parent namespace of the key
(i.e., “/a”) and derive two name patterns: “<a><KEY>[id]”
and “<KEY><2>”. Given the signing key name matches the
first pattern, the process recursively continues with the same
rule, until there is a match with the trust anchor.

If the key’s KeyLocator does not match any key name
pattern, it implies that the key does not comply with the
trust model and should be treated as an invalid key.

4.5 Schema for Authentication
For each data packet, the trust schema determines a valid

authentication path(s) within the corresponding trust model.
Given that the trust schema is expressed as formally defined
rules, an authentication interpreter of the trust schema can
automate the whole authentication process for any given
trust model (Section 5.1).

For each received data packet, the authenticating inter-
preter finds the corresponding trust rule by matching the
name of the packet against the specified name patterns in
the rules. If the packet and its KeyLocator comply with con-
straints of the found trust rule, the interpreter can then re-
trieve the public key according to the data’s KeyLocator and
recursively inspect the retrieved key according to the trust
schema, until reaching a trust anchor or a pre-defined limit
on the number of recursive steps. In the former case, the in-
terpreter has collected all the intermediate public keys on a
valid authentication path, thus can verify signatures starting
from the trust anchor up to the received data packet. When
the interpreter cannot find a rule that matches the received
data packet, or the constructed authentication path loops,
or the path becomes overly long, the interpreter declares
failure to discover the authentication path.

181

The received data packet is authenticated only if there is
a valid authentication path according to the trust schema,
and each signature on the path is verifiable and satisfies the
cryptographic requirements of the schema. In other words,
either failure to discover authentication path or failure to
verify any signature on the authentication path implies that
the received data packet cannot be authenticated with the
interpreted trust model.

4.6 Schema for Signing
One can also view the trust schema as a collection of con-

straints on a data packet’s signing key, with respect to its
name, signature, key type and size, etc. Thus, the trust
schema also specifies the required signing process, i.e., how
to select or generate signing keys given the name of the data
packet. Effectively, this allows automation of the signing
process using a signing interpreter of the trust schema (Sec-
tion 5.2).

The signing interpreter takes a data packet as an input
and looks up the corresponding trust rule. Instead of check-
ing for compliance of the data’s name and KeyLocator to the
trust rule, it infers the correct name of the key to be used
to sign the data packet. If this key exists on the system,
the interpreter will immediately sign and return the data
packet. If the key does not exist, the interpreter will try to
generate the key with the specified name and crypto require-
ments, and then sign this key by recursively re-interpreting
the same schema again with the generated key as a new in-
put. See further details in Section 5.2 on how the interpreter
can generate key names based on rules in the trust schema.

Note that it is not always possible for the interpreter to
automatically generate all necessary keys, without out-of-
band verification mechanisms. For example, if a not-yet
authorized author is trying to sign an article for publication,
the interpreter will fail to sign it, as the author does not have
a valid key to sign an article, nor a key to endorse an author
on the blog, nor a key to configure a new administrator in the
system. Even in this case, the interpreter can still generate
useful diagnostic information, e.g., which keys are missing
and how to obtain them.

5. AUTOMATING TRUST
Now that we have introduced the concept of schema-based

data authentication and signing, we will describe in detail
how to automate these processes, using the blog website
framework as an example.

5.1 Automating Authentication
Each step of the authentication path for data (key) pack-

ets is defined by the rules of the trust schema. Rules are
linked together through a function-like invocation of rule
names as part of the key name pattern definition, as shown in
Figure 7. The authentication process moves forward (from
one step to the next) only if the data (or key) satisfies
the conditions of the rule. We can model this authenti-
cation process as a Finite State Machine (FSM), with each
state representing a rule and state transitions representing
function-like invocations. This way, once a data packet en-
ters the FSM, the FSM’s states define the packet’s authen-
tication path, and an automatic process can walk through
these states until exiting the FSM with success or failure.

Execution of the FSM processing requires a trust schema
interpreter. The interpreter used for data authentication,

Authenticating Interpreter

signed
data

public
keys

... requests for
public keys

root

author

article

admin

Figure 10: Finite state machine for the authentication in-
terpreter of the blog website trust model schema

which we call authenticating interpreter, takes data packets
as input, requests public keys when necessary, and outputs
whether the received packet is authenticated or not. Given
the trust schema for a trust model, an authenticating inter-
preter can effectively automate the process of data authenti-
cation for this trust model. Figure 10 shows the FSM of an
authenticating interpreter for the blog website trust model
discussed in Section 4.4.1.

5.1.1 Authentication State
Whenever a new data packet arrives at the FSM, the inter-

preter determines the corresponding initial state by check-
ing the data name against the name patterns for each state.
After that, the interpreter initiates the key name checking
procedure, including steps to:

• extract components from the data name according to
the defined sub-patterns;

• derive the key name pattern from the rule’s key name
functions with the extracted components;

• check if the data’s KeyLocator matches the derived key
name pattern.

If the data packet passes the key name checking, the au-
thentication process transitions to the downstream state of
the FSM: the interpreter requests the key identified by the
KeyLocator field carried in this packet and pauses FSM pro-
cessing until the key is retrieved. When the key is delivered
to the interpreter, the interpreter initiates a new instance of
the same checking procedure at the state on which the FSM
processing previously paused. Whenever the FSM transi-
tions to a trust anchor state, the interpreter immediately
triggers verification of signatures, following the reverse path
of transitions in the FSM.

5.1.2 Walking Through the State Machine
In this section we demonstrate how the authentication au-

tomation can work for the blog website trust model. We use
an article data packet with name “/a/blog/article/food
/2015/1” signed by an author key “/a/blog/author/Yingdi
/KEY/22”as an example to show how the authentication pro-
cess goes through the state machine shown in Figure 10.

Initial state.
Based on the trust schema, the article name “/a/blog

/article/food/2015/1” will be captured by the “article”
rule, thus the authentication process starts from the corre-
sponding “article” state. When executing the key name
checking procedure, the interpreter will extract “<a>” as the
first sub-pattern and use it to derive a key name pattern

182

through a function-like invocation of the “author” rule. The
resulting pattern“<a><blog><author>[user]<KEY>[id]”will
successfully match the KeyLocator field of the data packet
and the FSM will transition to the downstream “author”
state.

State transition.
At this point, the interpreter makes a request for“/a/blog

/author/Yingdi/KEY/22” key and pauses processing until
the key is retrieved. After retrieving the requested key, the
interpreter resumes operations at the“author”state with the
retrieved key as an input. Similarly, the interpreter extracts
“<a>” as the first sub-pattern from the author key name
and derives through the “admin” rule a key name pattern
“<a><blog><admin>[user]<KEY>[id]”. Assuming that the
retrieved key is signed with an admin key “/a/blog/admin
/Alex/KEY/5”, the FSM will transition to the corresponding
“admin” state.

Self-loop transition.
The “admin” rule in the website trust schema links to two

trust rules, of which one is the “admin” rule itself. This
self-linked rule represents a management privilege delega-
tion from one administrator to another administrator and
is represented by a self-loop transition in the FSM. This
transition can capture an administrator key“/a/blog/admin
/Alex/KEY/5” signed with another administrator key “/a
/blog/admin/Lixia/KEY/37”. In this case, the FSM transi-
tions to the same “admin” state over the loopback link and
the interpreter requests for the other administrator key and
pauses the FSM processing again.

Note that a self-loop transition can potentially accept au-
thentication paths that contain loops or excessively long
authentication paths. To prevent these loops, the inter-
preter can record names of every intermediate key that each
state has observed during the authentication process, and
abort processing when detecting a duplicate. To prevent
excessively long authentication paths, e.g., from a carefully
crafted key chains in attempts to cause denial of service at-
tacks, the interpreter should set a limit on the number of
state transitions.

Transitioning towards the trust anchor state.
When the interpreter retrieves the public key “/a/blog

/admin/Lixia/KEY/37”, it can repeat the key name check-
ing procedure on the“admin”again, deriving two patterns for
key name matching: “<a><blog><admin>[user]<KEY>[id]”
(from the “admin” rule) and “<a><blog><KEY>[id]” (from
the trust anchor“root”). If“/a/blog/admin/Lixia/KEY/37”
key was signed by “/a/blog/KEY/1” (the specified trust an-
chor), the second name pattern would match the KeyLoca-

tor. In this case, the process immediately transitions to
the trust anchor state, triggering initiation of the signature
verification procedure.

Signature verification.
Once the signature verification procedure is triggered, the

interpreter will follow the reverse path of FSM back to the
original data packet, terminating with failure if at any step
it cannot verify the signature. In the example, the pro-
cess will start with validating “/a/blog/admin/Lixia/KEY
/37” key using the trust anchor key, following checking sig-

nature of “/a/blog/admin/Alex/KEY/5” using the validated
admin key, similarly for the author key “/a/blog/author
/Yingdi/KEY/22”, terminating with checking signature of
the received article data packet using validated author key.

5.2 Automating Signing
Another version of the trust schema interpreter, a signing

interpreter, can use a trust schema to automate selection of
signing keys and generation of keys when necessary/possible.
Similar to the authenticating interpreter, the signing inter-
preter compiles a trust schema to an FSM (Figure 11), but
processes an unsigned data packet as input and outputs the
data packet signed with a key that conforms to the trust
model (or fails). During processing, the interpreter interacts
with the private key store (e.g., Trusted Platform Module,
TPM) to request data signing and create signing keys when
they are not yet available.4

The signing interpreter will fail to sign the supplied data
packet if the required key is not available in the local TPM
and when the key generation procedure has to cross security
boundaries, e.g., a remote admin needs to sign new author’s
key. In such cases, additional out-of-band mechanisms are
necessary to generate proper keys. For example, when a
blog author is not an admin of the blog, he or she needs to
call or email one of the administrators to give him or her
the permission to publish articles. While it is impossible
for the signing interpeter to generate keys completely auto-
matically, it can provide assistance in creating the required
keys (e.g., generate signing requests) and simplify complex
cryptographic operations.

TPM

Signing Interpreter

unsigned
data

signed
data

private key
operations

root

author

article

admin

Figure 11: Signing interpreter for the blog website trust
model schema

5.2.1 Key Selection
Given a data packet, the signing interpreter can derive

the name pattern of a key that is allowed to sign this data
according to the trust model. For this purpose, it finds the
state in the FSM that corresponds to the data packet, and
expands the corresponding signing key name pattern. For
example, let us assume that an administrator of the blog
wants to publish his article“/a/blog/article/snacks/2015/
3”. This data packet will enter the FSM from the “article”
state, at which point the interpreter can derive the key name
pattern“<a><blog><author>[user]<KEY>[id]”, as shown in
step 1 in Figure 12. With the derived name pattern and the
crypto requirements from the trust schema, the interpreter
will search a qualified key in the TPM (step 2 in Figure 12).
In our example, the admin is publishing a blog article for the

4Ideally, a signing interpreter should be implemented as a
trusted service provided by operating system.

183

article
<a><blog><author>[user]<KEY>[id]

author

<a><blog><admin>[user]<KEY>[id] /a/blog/admin/Alex/KEY/5

/a/blog/article/snacks/2015/3

/a/blog/author/Alex/KEY/40

Derive key name for the article1

Derive key name for author’s key3

Lookup key in TPM2

Lookup key in TPM4

Expand author’s key
name and generate key4

/a/blog/article/snacks/2015/3

Sign data5

[user] is a function to expand to a local user name
[id] is a function to expand to a unique numerical identifier

Figure 12: An interpreter processing the blog website trust
schema directs the procedure of signing data “/a/blog
/article/snacks/2015/3”

first time, and is not yet authorized to do so, but the sign-
ing interpreter of the trust schema can automatically create
such authorization, as we will show below.

5.2.2 Creating Keys
When the interpreter cannot find a signing key that cor-

responds to a state of the FSM (the result of step 2 in Fig-
ure 12), it transitions to a downstream state and repeats the
key searching procedure. In our example, when the inter-
preter realizes that there are no author keys available, it will
try to find out if there is any administrator key available.
If not, the FSM will continue to transition downstream and
repeat the search, until there are no more possible transi-
tions available (note that self-loop transitions are skipped in
the signing process when the signing key does not exist in
the private key store). At this point the interpreter aborts
the signing operation, as it will not be able to sign anything
that will conform to the trust model.

In our example, the signing interpreter has access to the
administrator’s key (i.e., the author is also an administrator
of the blog), and it will try to create a new author key. In
order to create such key, the interpreter must derive a name
for the key. In this case, the wildcard specializer [func]

(Table 1) in a key name pattern can expand to specialize
the key name. For example, [user] can specialize the name
component for the author identifier using the local user name
(e.g., “Alex”), and [id] can generate a unique identifier for
the key. Therefore, at step 4 in Figure 12 (dotted blue
lines), the interpreter can expand the author key pattern
into “/a/blog/author/Alex/KEY/40”. At this point, the in-
terpreter is ready to generate an author key that satisfies the
crypto requirements and overall trust model specified in the
schema (step 4 on Figure 12), after which it will be ready
to sign data packets of the article by this author (step 5 on
Figure 12).

6. DISCUSSION
Having described the trust schema and its applications, in

this section we discuss the lessons learned, ongoing efforts,
and remaining research issues.

6.1 Design Pattern for Security
A trust schema is more than just an approach to describe

the relationships between data and key names, it also rep-
resents a design pattern to implement NDN security. Sim-
ilar to design patterns in software engineering [10], which
provide general reusable solutions to commonly occurring

problems in software design, the trust schema provides a
reusable solution of applying commonly used trust models in
NDN applications. Security experts can define a set of trust
schemas as the security patterns for frequently used data
authentication models. An established set of trust schemas
can greatly reduce the burden on NDN application develop-
ers, who can select an appropriate security pattern for their
applications during the design phase, to gain all the benefit
of NDN’s built-in security features.

6.2 Trust Schema Retrieval
A trust schema can be represented as NDN data packet(s),

i.e., it can be named and signed. In this paper, we do not
define a particular naming convention for trust schema. A
meaningful name of a trust schema should be related to the
name of the corresponding trust anchor, so that once a con-
sumer learns a trust anchor, the consumer can retrieve and
authenticate the trust schema.

Representing trust schema as NDN data packet allows
multiple trust schemas to be combined (or chained) together:
one can define a meta trust schema to authenticate other
trust schemas. For example, an operating system manufac-
turer can use this feature to limit software installation, exe-
cution, and access to private key stores on the operating sys-
tem only to applications with authenticated trust schemas.
This is similar to the existing application sandboxing ap-
proaches (such as Apple’s App Store and Google’s Google
Play), but gives operating system additional flexibility in
controlling applications.

6.3 Key Caching & Bundling
In our examples, data authentication processes walked

through the complete authentication paths defined by the
trust schema. However, these processes can be optimized
by utilizing cached keys that have been authenticated, given
that a single key usually signs multiple data packets (e.g.,
an author uses the same key to sign multiple articles, an
administrator uses his key to sign keys of authors, etc.). An
interpreter can cache each intermediate key of an authen-
tication process at the state where the key is checked and
verified, so that a new authentication process may find one
of its intermediate keys in those states before reaching a
trust anchor.

Note that even with key caching, the first authentication
process may still involve several round trips of retrieving in-
termediate keys. This process can be further optimized by
having the data producer to maintain the chain of interme-
diate keys and making it available in form of a key bundle.
By retrieving a key bundle, an authentication interpreter
obtains all the required keys in a single retrieval. In fact, it
has been a common practice in existing authentication sys-
tems (such as TLS [9]) to keep a complete chain of keys at
the key owner side.

6.4 Multi-Path Authentication
Trust models that define single authentication path for

data (e.g., PKI [8], DNSSEC [2]) are a common concern in
the security research community. Having just one way to
authenticate data creates a single point of failure, e.g., fail-
ing to timely renew certificate of any of the intermediate
keys will result in data authentication failure. When mul-
tiple authentication paths are available, allowing any of the
paths to authenticate data improves security resiliency of

184

applications to maintenance failures. At the same time, by
imposing a requirement that a key must be authenticated
through a certain number of paths, applications can miti-
gate the damage of key compromise.

If/when a data packet can carry multiple signatures [19],
a trust model defined with a trust schema can associate the
data name with key names across different namespaces. One
of our ongoing directions is exploration of a variety of con-
ditions on trust rules, such as “any valid”, “all valid”, etc.

6.5 Trust Bootstrapping
In describing the blog website example, we assume that

data consumers have already obtained the trust anchor of
the website. In general, a consumer may not always be able
to obtain the trust anchor for each website it visits a pri-
ori. In today’s practice, a consumer may need to bootstrap
trust from a limited number of pre-configured trusted keys
and eventually establish trust on a particular website’s trust
anchor. We believe that bootstrapping trust remains as an
important and challenging open issue, which is beyond the
scope of this paper but included in our ongoing efforts. Be-
sides the use of the existing Internet style PKI in NDN net-
works, more exciting directions to explore this open issue
include realizations of web-of-trust and evidentiality-based
trust bootstrapping models.

6.6 Signature Revocation
Signature revocation is an open research problem in NDN

trust management. Although this problem is beyond the
scope of this paper, our ongoing efforts explore the following
approaches:

• constraining validity period of issued signatures, which
may require mechanisms to certify validity of the sig-
nature at the time of creation (e.g., using secure times-
tamp);

• using trusted services to certify current validity of the
signature, similar to revocation lists and OCSP in cur-
rent PKI.

6.7 Formal Trust Schema Syntax
The syntax we used to describe the trust schema is still

at an experimental stage. Trust schemas share many de-
sign philosophies with logic programming languages (such
as Prolog [7]). It may be helpful to unify the trust schema
syntax with formal syntax used by existing languages, and
we would like to encourage researchers to apply techniques of
programming language to enhance the trust schema design
and improve the security of NDN applications.

7. RELATED WORK
The focus of this paper is trust management automation.

We are aware of similar efforts for Public Key Infrastructure
(PKI), including a standardized path validation algorithm
for X.509 certificate authentication [8], certificate chain dis-
covery methods for SPKI certificate system [6,14], and gen-
eral chain discovery mechanisms [3]. However, these studies
assume a specific trust model. Automation based on trust
schemas is a general trust management solution for NDN ap-
plications which can have different trust models. Moreover,
it not only allows automation of authentication process, but
also enables (at least partial) automation of the data signing
process.

The design of trust schema leverages NDN naming to en-
force name-based trust policies for data packets. DNSSEC [2],
a security extension of DNS, adopts a similar mechanism to
authenticate DNS resource records: a key bound to a DNS
domain name is globally trusted to sign only DNS resource
records under this domain. DANE [11] extends the name-
based mechanism of DNSSEC to authenticate a TLS public
keys. At the same time, both DNSSEC and DANE assume a
specific hierarchical trust model, while our trust schema can
capture many different trust models that NDN applications
may need.

The trust schema is basically a policy language, where
rules define policies on which keys are trusted to authenti-
cate data. Compared to previous work on policy languages
for access control and authorization, such as PolicyMaker [5],
SD3 [12], RT [13], and Cassandra [4], our work focuses on
data authentication and integrates data authentication into
the NDN network architecture.

8. CONCLUSION
Usability is a fundamental requirement for any security so-

lution. The NDN design mandates that each network-layer
data packet carries a cryptographic signature for authen-
tication. Although this requirement on the packet format
represents a significant first step toward securing networked
systems, its actual effectiveness depends on the implemen-
tation. Our observations during the first few years of NDN
application development suggest that it is a non-trivial task
for application developers to properly define trust relation-
ships between data and keys, to handle proper key chain
creation, and to enforce authentication of data according
to the defined rules. It happens too often that developers
use shortcuts to get around security (e.g., using hard-coded
keys, or simply turning verification off “temporarily” when
it blocks development progress).

In response to the above important and urgent issue, we
invented the idea of a trust schema to formally define appli-
cation trust models, and to automate the signing and ver-
ification processes. We developed prototypes of two trust
schema interpreters that can convert trust schemas into fi-
nite state machines and help applications to rigorously sign
and authenticate data automatically. We applied our pro-
totypes to secure a range of NDN applications, and our ex-
perience so far gives us confidence in the solution’s general
applicability to most, if not all, NDN applications.

We believe we have contributed a meaningful step toward
a reusable approach to data authentication. We plan to
apply the schematized trust management in more NDN ap-
plications and integrate the schematized trust management
with operating system support. We would also like to see
interested parties, especially people in security research com-
munity, to identify and define other commonly reusable trust
schemas (“security design patterns”) for popular network ap-
plications, to be used to secure more applications across the
Internet.

9. ACKNOWLEDGEMENTS
This work was supported in part by the NSF grants CNS-

1345318 and CNS-1345286.

185

10. REFERENCES
[1] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and

L. Zhang. SNAMP: Secure namespace mapping to
scale NDN forwarding. In Proc. of Global Internet
Symposium, 2015.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS security introduction and requirements.
RFC 4033, 2005.

[3] L. Bauer, S. Garriss, and M. K. Reiter. Efficient
proving for practical distributed access-control
systems. In ESORICS, 2007.

[4] M. Y. Becker and P. Sewell. Cassandra: Distributed
access control policies with tunable expressiveness. In
Proc. of International Workshop on Policies for
Distributed Systems and Networks (POLICY), 2004.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proc. of IEEE Symposium on
Security and Privacy, 1996.

[6] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette,
A. Morcos, and R. L. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer
Security, 2001.

[7] W. Clocksin and C. S. Mellish. Programming in
PROLOG. Springer Science & Business Media, 2003.

[8] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk. Internet X.509 public key
infrastructure certificate and certificate revocation list
(CRL) profile. RFC 5280, 2008.

[9] T. Dierks and E. Rescorla. The transport layer
security (TLS) protocol version 1.2. RFC 5246, 2008.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Pearson Education, 1994.

[11] P. Hoffman and J. Schlyter. The DNS-based
authentication of named entities (DANE) transport
layer security (TLS) protocol: TLSA. RFC 6698, 2012.

[12] T. Jim. SD3: A trust management system with
certified evaluation. In Proc. of IEEE Symposium on
Security and Privacy, 2001.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a role-based trust-management framework. In Proc.
of IEEE Symposium on Security and Privacy, 2002.

[14] N. Li, W. H. Winsborough, and J. C. Mitchell.
Distributed credential chain discovery in trust
management. In Proc. of Conf. on Comp. and Comm.
Security (CCS-8), 2001.

[15] NDN Team. Libraries / NDN platform.
http://named-data.net/codebase/platform/, 2015.

[16] NDN Team. NDN packet format specification.
http://named-data.net/doc/ndn-tlv/, 2015.

[17] NDN Team. NDN regular expression.
http://named-data.net/doc/ndn-cxx/current/

tutorials/utils-ndn-regex.html, 2015.

[18] D. Smetters and V. Jacobson. Securing network
content. Technical report, PARC, 2009.

[19] Y. Yu. Public key management in Named Data
Networking. Tech. Rep. NDN-0029, NDN, 2015.

[20] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,
kc claffy, P. Crowley, C. Papadopoulos, L. Wang, and
B. Zhang. Named data networking. ACM Computer
Communication Reviews, 2014.

186

